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The velocity and temperature fields for different shapes of the surface of the 
cylinder are presented. The computed and experimental average profiles of the 
velocity and intensity of turbulence are compared. 

The increasingly more stringent requirements on the powers and technical and economic 
indicators of internal combustion engines (ICEs) stimulate the search for reserve capacity 
and new solutions in the organization of the working process in the construction of such 
engines. This requires a mathematical analysis of the processes occurring in ICEs. Com- 
putational modeling reduces the expensive and protracted work that must be performed in 
order to produce the engines and to modify existing engines. 

Important aspects of the gas dynamics in ICEs and of combustion are studied in detail 
in several reviews. They concern the early work on multidimensional modeling [1-4], the 
question of determining turbulence in ICEs [5, 6], as well as numerical methods for calcu- 
lating flows in ICEs [7, 8]. The classification of mathematical models of processes occur- 
ring in the cylinders of an engine is discussed, for example, in [9]. 

An important period in the operating cycle of an ICE is the compression stroke, during 
which the flow "controlling" the mixing and stabilization of the burning of the fuel is 
formed. The configuration of the flow during compression is determined, for example, by 
structural elements, such as the geometric shape of the combustion chamber (CC). The search 
for the optimal construction of the CC must contend with the need for increasing the inten- 
sity of turbulence and therefore increasing the rate of mixing of the evaporating fuel with 
air. 

We shall study a symmetric flow of viscous compressible gas which is initiated by the 
translational motion of a piston whose surface, like the surface of the cylinder head, can 
in the general case be arbitrary. At the initial moment t = 0 the gas has zero translation- 
al velocity at a temperature of T o = 300 K. It is assumed that the charge rotates as a 
"rigid body" in a plane normal to the axis of the cylinder, i.e., the velocity, pressure, 
temperature, etc., remain constant along circles centered on the axis of symmetry. The ef- 
fective coefficient of turbulent mixing is calculated either following the "simplified sub- 
grid" model of turbulence [i0, ii] 
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The symbols in Eqs. (1)-(3) were taken from [12] (the tilde denotes tensor quantities): 
i$= Vu+ (VU)T; o is the tensor of turbulent stresses and is related with the turbulent vis- 
cosity by the generalized Newton's law; s is the longest side of the cell; and u is the 
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velocity vector averaged over the scale of the finite-difference grid. The terms on the 
right side of Eq. (3) denote the forces of compression, shear generation, diffusion trans- 
port, and dissipative decay of turbulence, respectively. 

The velocity of the piston obeys a sinusoidal dependence: V D = S~N sin (~)(2/S + cos (~)/ 
d)/60. The equations employed and the mathematical formulation o3 the problem are given, 
for example, in [9]. 

The limited size of the working memory of the BESM-6 computer does not permit using the 
number of computational nodes necessary for a very thin [13] boundary layer in a cylinder of 
the ICE. The boundary layer on the walls of the cylinder is much thinner than the layer 
near the walls of the computational cells, and psoing the conditions of sticking on the wall 
that are standard in classical hydromechanics leads to a loss of information about the flow 
near the wall. 

In [14, 15] the "Couette" approach to posing the boundary conditions at the wall was de- 
veloped as an alternative approach to the solution of this problem. It consists of using 
functions "at the walls," obtained under the assumption of a laminar or turbulent Couette 
flow in the layer of the cells near the wall. Of course, this approach is valid for flows 
that do not have recirculation zones. When return flows arise there are sections on the sur- 
face of the cylinder where such an approach is obviously incorrect. However, one can hope 
that the errors made in posing such boundary conditions do not affect the overall geometry 
of the flow. 

The numerical integration algorithm developed in [16-18] employs the explicit-implicit 
method ICE [19, 20] for tetragonal cells of arbitrary shape, which determine the spatial 
differences. The combined method of separation according to physical processes ICE-ALE 
[21, 22] involves three stages that are coupled at each time layer. At the first stage a 
Lagrangian calculation of the hydro- and thermodynamic parameters of the flow is performed. 
At the second stage an iteration procedure is employed to refine the pressure and internal- 
energy fields. At the third stage the individual variables are recalculated owing to con- 
vective transport. 

Methods for controlling the distribution of the internal nodes of a computational grid 
which covers a region of arbitrary shape are well known in the literature [23-25]. For the 
range of problems studied the geometry of the boundaries is such that it is possible to em- 
ploy simplified algorithms for the distribution of the internal nodes of the grid [23]. 
An example of a finite-difference grid with curvilinear boundaries, suitable for calcula- 
ting ICE with a CC with a definite shape, is shown in Fig. i. 

Figure 2 shows the results of the comparison of a numerical analysis of the gas-dynam- 
ics of compression with the experimental distributions taken from [26]. The computed and 
experimental average values of the u component of the velocity vector are compared at the 
top of the figure and the average values of the v component are compared at the bottom of the 
figure. As one can see from Fig. 2a, modeling the boundary conditions with the help of func- 
tions "at the wall" makes it possible to reproduce the real configuration of the flow - the 
experimental profiles agree with the computed profiles; this confirms the existence of a thin 
boundary layer at the wall of the cylinder. Imposing sticking conditions at the wall, how- 
ever, distorts the real pattern of the flow. As one can see, as the "resolution" of the grid 
is increased the solution with the sticking condition at the wall approaches the experimental 
profile. The experimental and computed distributions of the u and v components of the veloc- 
ity, corresponding to a different mathematical formulation of the description of turbulent 
diffusion~ are compared in Fig. 2b. To calculate the turbulent viscosity either a "simpli- 
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Fig. 2. Comparison of the computed and experimental data 
[26]: a) modeling of the boundary conditions [i) experiment; 
2) calculation with the wall functions; 3) sticking condi- 
tions with uniform step; 4) sticking with bunching at the 
walls]; b) modeling of turbulent viscosity [i) experiment; 2) 
differential subgrid model; 3) "simplified" subgrid model; 4) 
DT = i0-3]; c) modeling taking into account the roughness of 
the surfaces and comparison of the rms values s with exper- 
iment [i) experiment; 2) calculation, smooth surface; 3) cal- 
culation, sandy roughness; 4) experiment on rms values u~; 
5) differential subgrid model; 6) "simplified" subgrid mod- 
el]. z, r, mm. 

fled" subgrid model (i) or the differential model (2) and (3) were employed or the constant 
value u T = 10 -3 was emplo~f~d. As a supplement to Fig. 2c (top part) a comparison with re- 
spect to the rms values ~2, reflecting the contribution of turbulent pulsations (the num- 
bers 4, 5, and 6), are given. Analysis of the distributions presented in Fig. 2b and at the 
top of Fig. 2c shows that as the piston approaches the top dead point (TDP) the flow is tur- 
bulent, and in addition the turbulence can be modeled quite well with a "simplified" sub- 
grid model of turbulence (i), which is an equilibrium variant of the "differential" sub- 
grid model [12]. It should be noted that the intensity of turbulence, according to the 
calculations, is not uniform over the volume of the cylinder during compression (see the 
variant with u T = const), since the generation of turbulence owing to friction at the walls 
and the effect of the gas jet emanating from the opening above the cylinder in the CC play a 
significant role during compression. 

Under real conditions the internal, nonrubbing surfaces of the CC are not smooth. To 
answer the question of whether or not it is necessary to take into account the roughness of 
the surfaces when calculating the gas dynamics of compression, we performed calculations 
with a sandy roughness on the walls and compared the profiles obtained with the experimental 
profiles for a CC with smooth walls [26]. As the distributions presented in Fig. 2c show 
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Fig. 3. Comparison of the pat- 
terns of flow with identical 
CCs: a) calculation of the au- 
thors; b) calculation of [27] 
with the help of the RECP-3 
program. 

the roughness does not significantly affect the average values of the u and v components 
of the velocity vector. 

To make an additional test of the computational algorithm test calculations of the gas 
dynamics of compression were performed and compared with analogous calculations [27], car- 
ried out based on the computational program RECP-3. The experimental data from [5] were em- 
ployed as the starting velocity distribution, as done in [27]. As follows from Fig. 3, the 
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Fig. 4. Configuration of the flow for different forms of 
the CC with ~ = 170~ the velocity vectors are shown on the 
left and the distribution of the isotherms and the azimuthal 
velocity ~ are shown on the right. 
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flow patterns are in agreement in the entire region, except near the injector, where a spray 
of fuel develops (in Fig. 3b the flow pattern taken from [27] is shown at the moment of fuel 
injection). 

Figure 4 shows the velocity and temperature fields and the field of the azimuthal veloc- 
ity component ~ for two different forms of the surface of the cylinder head. As one can see, 
the geometry of the CC, shown in Fig. 4a, encourages the appearance of two, oppositely di- 
rected, vortices, of which the larger one lies closer to the axis of the cylinder. The vari- 
ant of the CC shown in Fig. 4b leads to weak formation of vorticity of the charge in the 
plane of the symmetry axis. One can also see that the magnitudes of the velocity vectors 
differ significantly. The fuel mixture will be better mixed in the CC shown in Fig. 4a than 
in the case of the CC shown in Fig. 4b. The figure shows the azimuthal velocity vector w, 
from whose magnitudes it follows that the configuration of the cylinder heads affects the 
change in the degree of twisting of the gas charge. Analysis of Fig. 4 demonstrates that a 
priori calculations of the gas dynamics of compression in designing the form of the CC of a 
cylinder of a ICE can make effective predictions. 

The numerical calculations of the gas dynamics of compression in a cylinder of a ICE 
show the following: a) under the assumption of a thin boundary layer at the walls, the com- 
putational method employed permits predicting with adequate accuracy the configuration of 
the flow in the CC of the cylinder of a ICE as the piston approaches the TDP; b) the form 
of the surface of the cylinder head strongly affects the configuration of the flow during 
the compression process; c) the presence of irregularities on the inner surfaces of the CC 
does not appreciably affect the pattern of development of the flow; and, d) the degree of 
turbulent diffusion can be predicted quite well using the "simplified" subgrid model of tur- 
bulence. At the same time the intensity of turbulent diffusion is not the same over the en- 
tire volume of the cylinder during the compression stroke. 

NOTATION 

t, time; To, starting temperature; ~T, turbulent viscosity; p, density; Vp, velocity of 
the piston; S, length of the cylinder path; N, number of revolutions of the fly wheel; e, 
angle of rotation of the crankshaft; d, length of the connecting rod; u, v, longitudinal 
and transverse components of the velocity. 
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STRUCTURE OF INHOMOGENEOUS MEDIA WITHIN THE RANDOM FRACTAL 

MODEL 

R. R. Nigmatullin and N. N. Sutugin UDC 536.7 

The porosity of inhomogeneous media is treated within the random fractal mod- 
el. Analytic expressions are obtained for the size distribution curves of 
bulk mesopores. 

The concepts of a fractal and fractal dimensionality [i] are extremely fruitful in de- 
scribing the geometry of heterogeneous systems, in the study of percolation effects, proper- 
ties of various self-similar objects and structures, generated in hydrodynamics, astrophys- 
ics, electrochemistry, and other disciplines. More detailed information can be found, for 
example, in the reviews [2, 3]. The extension of the concept of a regular fractal and the 
introduction of a set of inhomogeneous objects with distributed values of fractal dimen- 
sionality became possible due to the multifractal approach, a topic discussed in the stud- 
ies [4, 5]. 

Besides this extended class of regular fractals another is possible, which, as far as 
we are concerned, is a more natural method of introducing fractals, where the fractal scale, 
and not its dimensionality, occupies the role of the random fractal. The random fractal 
model (RFM) is proposed on the basis of the new concept of generalized fractal. The distri- 
bution function of various scales is found, and equations are obtained for the porosity of 
an inhomogeneous medium. The equations for two-phase system concentrations are generalized 
and interpreted if the distribution of one of the phases is fractal. A more detailed inter- 
pretation of experiments, related to measurements of porosity and the proof of their frac- 
tal occurrence in sandstones, is given within the RFM [6, 7]. Also analyzed was the size 
distribution function of bulk mesopores with the purpose of searching regions of fractal 
structure with its help. Comparison with experiment makes it possible to establish a number 
of new consequences and indicates internal consistencies of the model. 

Description of Heterogeneous Media by Generalized Fractals. By means of some figure we 
divide the given volume V into original or elementary "volumes" vf(A) = GfA d with character- 
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